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Yuan and Lin, 2006; Lin and Zhang, 2006; Liu et al., 2007; Ravikumar et al., 2009; Chouldechova and Hastie, 2015; He and Wand, 2022; 
Fabian Scheipl and Kneib, 2012
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- gLasso-type penalty: COSSO, SPAM, GAMSEL


- BAYESIAN: spike and slab
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SMOOTHING

- Smoothing splines with ridge type penalty


- BAYESIAN: Normal prior on the coefficients

Wahba, 1990; Wood, 2017, Figures from Liu et al, 2025
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outperforms other methods in accuracy in estimation and selection
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Lastly

Q6: 
Where does VARD stand in 
comparison to deep learning 
methods? How can it 
compare? 

Experiments with synthetic and real-world datasets demonstrating 

• effectiveness of VARD in feature selection 
and individual smoothing


• capacity to differentiate nonlinear, linear, 
and zero functions


• estimation accuracy


• competing performance to other methods



Congratulations to the authors! 


Thank you for your attention!


